INDEX

2 Project overview

3 Greetings from project leaders

4 Research group
 A01: Physicochemical processes in slow-to-fast phenomena
 A02: Anatomy of Slow-to-Fast seismogenic zones
 A03: Slow-to-fast earthquakes through comparison across global subduction zones

6 B01: Development of multi-scale observation techniques for monitoring Slow-to-Fast earthquakes

10 B02: Data-driven discovery & monitoring of Slow-to-Fast earthquakes

14 B03: Spatio-temporal multiscale modeling and forecast of slow and fast earthquakes

16 Activity report / Upcoming event
Grant-in-Aid for Transformative Research Areas (A)

Science of Slow-to-Fast Earthquakes

A Grant-in-Aid for a scientific research project entitled “Science of Slow-to-Fast Earthquake” focuses on slow earthquakes (e.g., tectonic tremor and slow-slip events) that have been discovered in recent years, as well as ordinary (or fast) earthquakes, including huge earthquakes. During fast earthquakes, faults rupture rapidly, releasing strong seismic waves. During slow earthquakes, faults also rupture, but slowly, so the shaking is not as intense. Since the first slow event was discovered in Japan about 20 years ago, slow earthquakes have also been identified in other regions worldwide (Fig. 1), and study of these slow events has allowed their characteristics to be well defined. However, the relationship between slow earthquakes and fast (including huge) earthquakes is not well understood. In this new project, we aim to develop a comprehensive understanding of both slow and fast earthquakes and the relationship between them.

Researchers from various fields will participate in this project. In addition to seismologists, researchers with particular experience and expertise in slow earthquakes, as well as geodesy, geology, geochemistry, and physics, will participate to understand the materials in which earthquake faults occur and to clarify the laws of friction and fracture. In addition, researchers in engineering will participate to develop new observation techniques, and researchers in information science and statistics with expertise in data science will also participate. To enable these researchers from various fields to collaborate effectively, six research subgroups have been established (Fig. 2): the A01 Physicochemical Processes Group, A02 Structural Anatomy Group, A03 International Comparison Group, B01 New Technology Observation Group, B02 Information Science Group, and B03 Modeling and Forecast Group. In addition, we will call for research proposals every two years. Approximately 100 researchers, and many students who will lead the next generation of scientists, will work within this five-year-long research project to better understand both slow and fast earthquakes and more reliably forecast their future occurrence.

The administrative group of the project includes the lead investigator of the main research area and the principal investigators of the planned research subgroups. The administrative group will be in charge of communication within the main research area, maintenance of the shared database, publicity and publication activities, and communication with members of other research projects, local governments, and public organizations. The administrative group will organize various research exchange programs, such as annual international joint workshops, special sessions at domestic and international conferences, field trips, and casual meetings. Internationally, the group will organize overseas workshops and manage programs for the interchange of researchers. Activities to encourage young and diverse researchers are also planned. The office of the administrative group will be located at the Earthquake Research Institute of the University of Tokyo.
Getting started on the Science of Slow-to-Fast Earthquakes

Satoshi Ide (The University of Tokyo)
Project leader of “Science of Slow-to-Fast Earthquakes”

We are pleased to announce the start of our new research project entitled “Science of Slow-to-Fast Earthquakes”.

Slow earthquakes were first discovered about 20 years ago. Since then, numerous studies have contributed important findings about these slow events and have brought them to public attention. The occurrence of slow-slip events has been reported on TV news and has featured in the TV science fiction drama “Sinking of Japan”. In addition, the handling of information about slow earthquakes has become an important issue in Japanese national earthquake countermeasures, which have been reconfigured since 2017.

Slow earthquakes are interesting and important phenomena both in terms of basic science and in respect of their potential impact on society, particularly with regard to their relationship with fast earthquakes. However, our understanding of the relationship between slow and fast earthquakes, including huge earthquakes, is still limited. To address this issue, we are starting a new project entitled “Science of Slow-to-Fast Earthquakes,” which will be an extension of “Science of Slow Earthquakes” project. This new project is expected to change the way in which we think about earthquakes by better understanding slow earthquakes, fast earthquakes, and the relationship between them, including the possible transition of the former to the latter, and various associated phenomena.

Expectations for the Science of Slow-to-Fast Earthquakes

Kazushige Obara (Earthquake Research Institute, the University of Tokyo)
Project leader of “Science of Slow Earthquakes”

I am very pleased that the project “Science of Slow-to-Fast Earthquakes” has been funded by the Grant-in-Aid for Transformative Research Areas (A) by MEXT as the successor to “Science of Slow Earthquakes”.

Slow earthquake research has made considerable progress globally since our world-first discovery of slow slip events and tremor at the beginning of the twenty-first century. About 10 years after this discovery, slow earthquake research moved from the “era of discovery” to the “era of understanding”, and research by overseas scientists started to make important contributions to the field. To further develop slow earthquake research in Japan, we initiated the project “Science of Slow Earthquakes” in 2016 funded by a Grant-in-Aid for Scientific Research on Innovative Areas.

The project “Science of Slow Earthquakes” set a goal of working towards a unified understanding of all earthquake events, from low-speed deformation to high-speed slip, and clarifying the mechanisms, environmental conditions, and principles of slow earthquakes. This project has advanced our understanding of such earthquakes. In particular, collaboration between different research fields of geophysics, geology, and non-equilibrium physics has been improved through various interdisciplinary activities such as field trips. In addition, this project has contributed greatly to human resource development by sending young researchers overseas and strengthening of international leadership by our country for slow earthquake research through the planning and management of overseas workshops in New Zealand and Chile.

In the post-project evaluation of “Science of Slow Earthquakes”, it was pointed out that the relationship of slow earthquakes to high-speed rupture was not yet fully understood. Developing this understanding is therefore the main objective of “Science of Slow-to-Fast Earthquakes.” It is understood that the funding of this new project reflects high expectations for generating new understandings and insights regarding slow-to-fast earthquakes. It is anticipated that this new project will produce excellent research outputs that fulfill and even exceed expectations within five years, as well as encourage and develop young scientists and leaders within the field of slow-to-fast earthquakes.
The aim of A01 group is to understand how fault slip begins and propagates into a wide range of earthquakes including slow-to-fast. Elucidating this mechanism from micro fundamental processes is an essential theme for generalizing, modelling, and predicting catastrophic seismic phenomena demonstrating various forms. Recent investigations have found the presence of water has a significant influence on the elementary processes of slow-to-fast earthquake generation and development. On the other hand, the specific effects of water or the heterogeneity and scale-transformability in the extension of the fundamental processes to fault slip in macro scale have not yet been clarified. In this research group, we will conduct laboratory experiments including friction and compression tests, chemical analysis, and structural analysis, as well as numerical experiments based on non-equilibrium physics and elastodynamic modelling to shed light on the seismic slip process in the presence of this fluid and scale-shape effects, and to model the elementary process of slow-to-fast earthquakes. These will be output for comparison with natural phenomena and for large-scale modelling in other research groups with the aim of understanding the underlying physico-chemical processes of generation mechanisms of slow earthquakes and the transition and development to fast earthquakes.
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Role</th>
<th>Institution</th>
<th>Specialty</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yohei Hamada</td>
<td>Researcher, X-star, JAMSTEC</td>
<td></td>
<td>Fault material science</td>
<td>Subduction zone, Chemical kinetics, Fluid-flow friction experiments</td>
</tr>
<tr>
<td>Hiroyuki Noda</td>
<td>Associate Professor, Disaster Prevention Research Institute, Kyoto Univ.</td>
<td></td>
<td>Fault mechanics</td>
<td>Earthquake sequence simulation, Fault constitutive law</td>
</tr>
<tr>
<td>Tetsuo Yamaguchi</td>
<td>Associate Professor, Department of Biomaterial Sciences, the Univ. of Tokyo</td>
<td></td>
<td>Experimental seismology, Soft matter physics, Non-linear physics, Mechanics of materials, Polymer science</td>
<td>Analogue modeling, Gel, Granular matter, Friction, Rheology</td>
</tr>
<tr>
<td>Satoshi Tonai</td>
<td>Lecturer, Faculty of Science and Technology, Kochi Univ.</td>
<td></td>
<td>Structural geology</td>
<td>Tectonics, Southwest Japan, Analogue modeling</td>
</tr>
<tr>
<td>Michiyo Sawai</td>
<td>Assistant Professor, Graduate School of Science, Chiba Univ.</td>
<td></td>
<td>Rock physics</td>
<td>Friction, Subduction zone, Fault, Earthquake</td>
</tr>
<tr>
<td>Ikuo Katayama</td>
<td>Professor, Hiroshima Univ.</td>
<td></td>
<td>Rock rheology</td>
<td>Rock deformation experiment, Physical properties of rock, Fluid flow</td>
</tr>
<tr>
<td>Yutaka Sumino</td>
<td>Associate Professor, Department of Applied Physics, TUS</td>
<td></td>
<td>Non-equilibrium soft matter physics</td>
<td>Analog experiment, Rheology, Pattern formation</td>
</tr>
<tr>
<td>Tomoaki Niiyama</td>
<td>Associated Professor, Institute of Science and Engineering, Kanazawa Univ.</td>
<td></td>
<td>Nonlinear physics</td>
<td>Molecular dynamics simulations plastic deformation, Self-organized criticality</td>
</tr>
<tr>
<td>Takahiro Hatano</td>
<td>Professor, Department of Earth and Space Science, Osaka Univ.</td>
<td></td>
<td>Statistical physics</td>
<td>Rheology, Friction, Granular matter</td>
</tr>
<tr>
<td>Futoshi Yamashita</td>
<td>Chief Researcher, NIEO</td>
<td></td>
<td>Tectonophysics</td>
<td>Large-scale experiment, Rock friction, Rock resistivity</td>
</tr>
<tr>
<td>Akito Tsutsumi</td>
<td>Associate Professor, Graduate School of Science, Kyoto Univ.</td>
<td></td>
<td>Structural geology, Fault rheology, Experimental rock deformation</td>
<td>Fault internal structures, Frictional velocity dependence</td>
</tr>
<tr>
<td>Atsushi Okamoto</td>
<td>Professor, Graduate School of Environmental Studies, Tohoku Univ.</td>
<td></td>
<td>Metamorphic petrology, Geo-fluid science</td>
<td>Water-rock interaction, Hydrothermal experiments, Geochemical modeling</td>
</tr>
<tr>
<td>Miki Takahashi</td>
<td>Group Leader, IEOG, GSJ, AIST</td>
<td></td>
<td>Rock mechanics</td>
<td>Fracturing, Faulting, Brittle-ductile transition</td>
</tr>
<tr>
<td>Takehito Suzuki</td>
<td>Assistant Professor, Department of Physical Sciences, Aoyama Gakuin Univ.</td>
<td></td>
<td>Theoretical seismology</td>
<td>Source, Nonlinear, Friction, Fluid</td>
</tr>
<tr>
<td>Wataru Tanikawa</td>
<td>Senior Researcher, JAMSTEC</td>
<td></td>
<td>Experimental Rock Mechanics</td>
<td>Fluid flow, Abnormal pore pressure, Dual friction</td>
</tr>
</tbody>
</table>
Anatomy of slow-to-fast seismogenic zones

Principal Investigator
Asuka Yamaguchi, Atmosphere and Ocean Research Institute, the University of Tokyo

The A02 Structural Anatomy Group will "dissect" the structure and changes in the state of the source regions of Slow-to-Fast earthquakes (Slow-to-Fast seismogenic zones) with unprecedentedly high spatio-temporal resolution. By combining precise imaging of the subsurface structure and monitoring of changes in physical properties by geophysical observations, deciphering of earthquake histories and fluid traces in rocks by geological material research, and the latest findings of chemical analysis, experiments, and simulations, we aim to understand the behavior of materials and fluids that characterize Slow and Fast earthquakes, and the preparation process for Fast earthquakes. We have set southwest Japan (especially the Kii Peninsula to the Nankai Trough off Kumano), where the most accumulated research on land and sea has been conducted, as a test field, and will integrate observation and material research from shallow to deep in cooperation with other groups. It is expected that the fusion of geophysics and geology will enable us to create a live map of the fluids that cause earthquakes, which will be supported by material science. In the test field, there are concerns about the occurrence of Nankai Trough earthquakes, and we will also work to disseminate our research results and return them to society in cooperation with the Nanki-Kumano Geopark.
Asuka Yamaguchi
Associate Professor, AORI, the Univ. of Tokyo
Specialty: Structural geology, Marine geology
Keywords: Accretionary prism, Ocean drilling, Spatiotemporal scale

Ryuta Arai
Researcher, IMG, JAMSTEC
Specialty: Structural seismology
Keywords: Seismic survey, Full waveform inversion analysis, Plate structure

Yoshitaka Hashimoto
Professor, Natural Science Cluster, Kochi Univ.
Specialty: Structural Geology, Physical Properties
Keywords: Accretionary complex, Elastic velocity

Takashi Tonegawa
Research Scientist, JAMSTEC
Specialty: Monitoring seismological structure in the ocean
Keywords: Seismic interferometry, Seismological structure, Monitoring

Rie Nakata
Assistant Professor, ERI, the Univ. of Tokyo
Specialty: Seismology, Seismic imaging
Keywords: Seismic survey, Seismic inversion, Ocean drilling

Takeshi Akuhara
Assistant Professor, ERI, the Univ. of Tokyo
Specialty: Marine seismology
Keywords: Ocean-bottom seismometer, Seismic waveform analysis, Rayleigh inversion

Atsushi Noda
Group Leader, Geological Survey of Japan, AIST
Specialty: Sedimentary geology
Keywords: Geological mapping, Forearc basin, Analogue experiments

Kazuya Shiraishi
Researcher, Research Institute for Marine Geodynamics, JAMSTEC
Specialty: Exploration geophysics
Keywords: Seismic reflection survey, Nankai Trough, Crustal structure

Saeko Kita
Senior Research Scientist, ISEE, BRI
Specialty: Seismology (Geophysics)
Keywords: Intra-slabs earthquake, Seismo-tectonics, Diversity

Simon Wallis
Professor, the Univ. of Tokyo
Specialty: Structural geology, Tectonics
Keywords: Convergent plate boundary geology, Metamorphism, Structural petrology

Takeshi Tsuji
Professor, Kyushu Univ.
Specialty: Geophysical exploration
Keywords: Seismic reflection survey, Seismic monitoring, Structural geology

Makoto Otsubo
Chief Senior Researcher, Geological Survey of Japan, AIST
Specialty: Tectonophysics
Keywords: Crack, mineral vein, Fluid migration

Masaoki Uno
Assistant Professor, Graduate School of Environmental Studies, Tohoku Univ.
Specialty: Metamorphic petrology and geochemistry
Keywords: Water-rock reactions, Reactive-transport modeling, Sanbagawa metamorphic belt

Ayumu Miyakawa
Senior Researcher, Geological Survey of Japan, AIST
Specialty: Geodynamics
Keywords: Geodynamic modeling, Geomechanics, Gravity survey

Akira Ijiri
Associate Professor, Graduate School of Maritime Sciences, Kobe Univ.
Specialty: Geochemistry
Keywords: Stable isotope geochemistry, Pore water, Geofluid

Chuki Hongo
Researcher, Wakayama Prefectural Nanki Kumano Geopark Center
Specialty: Physical geography
Keywords: Coast, Kuroshio, Climate change
Both extremital processes of slow and fast ruptures on a fault are commonly observed within the seismogenic zone worldwide as well as the subduction zones in the Pacific Rim. Similar rupture processes with time scales from slow to fast have also been frequently observed during a volcanic eruption globally. Group A03 aims to identify the factors that control such slow and fast rupture processes during earthquakes and volcanic phenomena in the subduction zones worldwide based on some of the results obtained from the onshore and offshore seismic and geodetic observations, geological fieldwork, and information on the core materials obtained from the ocean drilling projects. Here, we try to highlight the novel achievements of comparative subductology on Science of Slow-to-Fast Earthquake, in collaboration with the interdisciplinary scientists within the field of seismology, geodesy, volcanology, geology, and geochemistry. With a focus on discriminating both globality and regionality controlling the slow and fast rupture processes through comparative subductology, we aim to capture the actual images of the two extremital rupture processes and further conduct its modeling.
Yoshihiro Ito
Associate Professor, Disaster Prevention Research Institute, Kyoto Univ.
Specialty: Seismology
Keywords: Slow earthquakes, Ocean bottom observation, International cooperation

Kimihiro Mochizuki
Associate Professor, ERI, the Univ. of Tokyo
Specialty: Marine seismology
Keywords: Ocean bottom seismometer, Plate interface fault, Structural heterogeneity

Kohtaro Ujiie
Associate Professor, Univ. of Tsukuba
Specialty: Structural Geology, Tectonics
Keywords: Fault rocks, Accretionary prism, Subduction zone

Tsunoshi Ishikawa
Principal Researcher, Kochi Institute for Core Sample Research, X-star, JAMSTEC
Specialty: Solid-earth geochemistry, Petrology
Keywords: Geochemical analysis, Fluid-rock interactions

Suguru Yabe
Researcher, Geological Survey of Japan, AIST
Specialty: Seismology
Keywords: Tectonic tremor, Slow Slip, Logging data

Yuta Maeda
Lecturer, Earthquake and Volcano Research Center, Graduate School of Environmental Studies, Nagoya Univ.
Specialty: Volcano seismology
Keywords: Volcano earthquakes, Long-period seismic events, Tilt

Shoichi Yoshioka
Professor, Research Center for Urban Safety and Security Department of Planetology, Kobe Univ.
Specialty: Solid Geophysics
Keywords: Numerical modeling, Temperature, Dehydration

Shin’ichi Miyazaki
Professor, Kyoto Univ.
Specialty: Geodesy, Crustal deformation
Keywords: GNS, Slow slip

Haruhsa Nakamichi
Associate Professor, Disaster Prevention Research Institute, Kyoto Univ.
Specialty: Volcano geophysics
Keywords: Magma supply system, Volcanic hydrothermal system, Volcanic eruption process

Yusuke Yamashita
Assistant Professor, Miyazaki Observatory, Disaster Prevention Research Institute, Kyoto Univ.
Specialty: Observational seismology
Keywords: Ocean bottom observation, Shallow tectonic tremor, Miyaga-mada

Shinichi Matsushima
Professor, Disaster Prevention Research Institute, Kyoto Univ.
Specialty: Engineering Seismology, Earthquake Engineering
Keywords: Strong motion estimation, Site amplification characteristics, Seismic damage estimation

Hiroyuki Kumagai
Professor, Graduate School of Environmental Sciences, Nagoya Univ.
Specialty: Volcano seismology
Keywords: Volcano-seismic events, Magma, Eruption

Tomoaki Nishikawa
Assistant Professor, Disaster Prevention Research Institute, Kyoto Univ.
Specialty: Seismology
Keywords: Statistical seismology, Slow earthquakes
Development of multi-scale observation techniques for monitoring slow-to-fast earthquakes

Observation data form a basis for predicting geophysical phenomena. In Japan, the development of the dense geodetic and seismological observation networks has led to the first discovery of slow earthquakes. However, the existing observation networks are limited in a sense that each observational technique has a specific spatiotemporal band, by which only discretized nature of a geophysical phenomenon can be observed. In particular, precise instruments which are able to observe slow phenomena such as slow slip events are small in number, causing a gap in a spatiotemporal coverage. Therefore, the full picture of how slow phenomena transit to fast phenomena has been still unclear. In order to reveal an accurate picture of the transition process and to construct a prediction model based on such a picture, this group develops ‘multi-scale observation techniques’, which allow a seamless observation in a spatiotemporal coverage, making use of optical and ocean engineering. To be specific, we develop an absolute gravity measurement method to effectively assess an underground fluid migration, a highly stable and precise fiber sensing method to capture a wider range of earthquakes including slow slip, ocean-bottom geodetic measurement with a high temporal resolution and a seismological observation in an ultra-deep sea near a trench to observe slow-to-fast earthquakes.
Yoshiyuki Tanaka
Associate Professor, Department of Earth and Planetary Science, The Univ. of Tokyo
Speciality: Geodesy
Keywords: Crustal deformation, Gravity, Relativistic geodesy

Hajime Shiobara
Professor, ERI, the Univ. of Tokyo
Speciality: Ocean floor seismology
Keywords: Ocean bottom seismometer, Broadband seismic observation, Ocean bottom geodetic observation

Akito Araya
Professor, ERI, the Univ. of Tokyo
Speciality: Instrumental solid earth science
Keywords: Gravimeter, Laser, Instrumentation

Masato Yoshida
Associate Professor, Research Institute of Electrical Communication, Tohoku Univ.
Speciality: High-precision optical measurement
Keywords: Fiber laser, Optical measurement, Optical communication

Keisuke Kasai
Associate Professor, Research Institute of Electrical Communication, Tohoku Univ.
Speciality: Light wave control system
Keywords: Frequency stabilized laser, Light wave phase control, Optical communication

Makoto Okubo
Associate Professor, Unit of Science and Technology Kochi Univ.
Speciality: Observational seismology, Solid geophysics
Keywords: Dynamic strain, Long term seismogram, Waveform analysis

Yosuke Aoki
Associate Professor, ERI, the Univ. of Tokyo
Speciality: Geodesy
Keywords: GNSS, SAR, Crustal deformation

Eiichiro Araki
Group Leader, Research and Development Group for Seafloor Observatory, FEAT, IMG, JAMSTEC
Speciality: Seafloor seismology
Keywords: Fiber-optic sensing technology, Slow slip event Long-term seafloor observation

Satoshi Itaba
Senior Researcher, Geological Survey of Japan, AIST
Speciality: Geodesy, Seismology
Keywords: Crustal movement, Strainmeter, SSE

Yusuke Yokota
Associate Professor, Institute of Industrial Science, The Univ. of Tokyo
Speciality: Seafloor geodesy
Keywords: GNSS-A, Seafloor crustal deformation, Marine acoustics

Ultra stable fiber sensing to detect slow to fast earthquakes

Seismic wave detected with submarine optical cable
- P wave
- S wave

Strain (micron-strain)

Distance

Unmanned deep sea floor measurements
- Once/year
- 1-2 weeks/year

UAV
Data-driven discovery and monitoring of slow-to-fast earthquakes

Principal Investigator
Aitaro Kato, Earthquake Research Institute, The University of Tokyo

By promoting integrated research of information science and geophysics, the B02 group will search for unknown slow-to-fast earthquakes hidden in earthquake big data and analyze the statistical and geophysical properties that characterize slow-to-fast earthquakes. This group is working on two main themes. In "(1) Data-driven approach such as machine learning and statistics", we will extract some features of slow and fast earthquakes propagating throughout a network consisting of multiple stations. These features will be leveraged to innovate technology for comprehensive detection of seismic and geodetic events. We challenge to discover the transition phenomenon of slow-to-fast earthquakes. In "(2) Monitoring of slow-to-fast earthquakes by big data analysis", we aim to deepen a comprehensive understanding of slow-to-fast earthquakes by renewing the monitoring method in sea and land through information science, unified understanding of scaling law and expansion of "slow earthquake catalog. We will also develop a high-speed algorithm suitable for ultra-high density seismic observation data (DAS), which is 1000 times that of conventional seismic networks.
Spatio-temporal multiscale modeling and forecast of slow and fast earthquakes

Principal Investigator
Takanori Matsuzawa, National Research Institute for Earth Science and Disaster Resilience

Slow earthquakes have a seismic moment of more than 10 orders of magnitude, and fast earthquakes have a larger range of seismic moment than slow earthquakes. In addition, slow and fast earthquakes obey different scaling relationships over both temporal and spatial scales. The goal of Group B03 is to model and forecast the occurrence of slow and fast earthquakes and the transition between them. We also aim to develop a research area linked to the field of high performance computing (HPC). We will model slow and fast earthquakes, especially large-scale numerical simulations that maintain hierarchy of slip distribution and multi-scale complexity. We also aim to integrate stochastic/statistic models with physical models. We will conduct earthquake forecasting based on a multifaceted approach using new perspectives, in addition to an HPC-based approach, and aim to incorporate real-time information. Regarding data analysis for large-scale modeling, we will conduct research to reduce model errors by applying HPC and to extend the spatio-temporal range of the catalogs of slow and fast earthquakes through the analysis of past data. We intend that these studies will lead to a new scientific basis for disaster prediction.

Members

As of Dec. 7, 2021

Takanori Matsuzawa
Chief Researcher, NIED
Specialty: Seismology
Keywords: Numerical simulation, Very low frequency earthquake, Analog seismogram

Takane Hori
Director of R&D Center for Earthquake and Tsunami Forecasting, JAMSTEC
Specialty: Forecasting of earthquake generation
Keywords: HPC, Subduction zone, Forecast of transition

Satoshi Ide
Professor, Department of Earth and Planetary Science, The Univ. of Tokyo
Specialty: Seismology
Keywords: Physics of earthquake source, Earthquake scaling, Stochastic earthquake process

Yoshihiro Kaneko
Associate Professor, Graduate School of Science
Kyoto Univ.
Specialty: Seismology
Keywords: Earthquake source physics, Seismic-cycle simulations, Full-waveform tomography

Akemi Noda
Researcher, MRI, JMA
Specialty: Seismology
Keywords: GNSS data, Inversion analysis, Energy balance

Shunichi Nomura
Associate Professor, Graduate School of Accountancy
Faculty of Commerce, Waseda Univ.
Specialty: Statistical seismology
Keywords: Point process, Repeating earthquakes, Foreshock discrimination

Hitoshi Hirose
Associate Professor, RCUSS, Kebe Univ.
Specialty: Seismology
Keywords: Crustal deformation, Slow slip events, Strain budget

Ryoichiro Agata
Researcher, JAMSTEC
Specialty: Seismology
Keywords: Fault slip inversion, Bayesian inference, Uncertainty quantification

Ryosuke Ando
Associate Professor, School of science, Univ. of Tokyo
Specialty: Earthquake source physics, Tectonophysics
Keywords: Large-scale earthquake simulations, Slow and fast earthquakes, Palaeoseismology

Masayuki Kano
Assistant Professor, Tohoku Univ.
Specialty: Crustal deformation
Keywords: Data assimilation, Slow slip event, Inference science

Tatsuhiko Saito
Chief Researcher, Earthquake and Tsunami Research Division, NIED
Specialty: Earthquake mechanics
Keywords: Megathrust earthquake, Tsunami, Energy

[Cover photos]

(Left) An example slip velocity distribution of numerically reproduced slow-slip events (SSEs) in the Nankai Trough. Brighter colors indicate higher slip velocities. This example is for a long-term SSE that occurred in the Bungo Channel.

(Upper right) A thermometer and flowmeter were installed using the Remotely Operated Vehicle (ROV) KAIKO (shown) to verify whether or not the fiber strain variations in the fiber-optic cable measurements off Murata Peninsula may be caused by seafloor temperature changes (KR21-13 Kaimo Dive #67).

(Lower right) A 4-m-long rock friction experimental device for detailed observations of stick-slip phenomena on a fault.
Kick-off field trip

On Saturday, January 8th, we held a kick-off field trip to Jogashima, Kanagawa Prefecture. Although there were a number of last-minute cancellations due to the rapid spread of the Omicron variant, 33 people from both inside and outside the region participated in the field trip.

Jogashima Island is located off the southern tip of the Miura Peninsula, and is an ideal location to observe the Misaki Formation of the Miura Group, which was deposited about 10 to 4 million years ago. The Misaki Formation is composed of volcaniclastic sediments (scoria and pumice) from the Izu-Bonin Arc and hemipelagic mudstone deposits, and it records both soft-sediment deformation immediately after deposition and tectonic deformation in the shallow part of the accretionary prism. During the trip, we carefully observed the tilted strata and their constituent materials, flame structures, fault structures, and fault zone materials, and had a lively discussion about the structures that formed via density instability and shearing, fault slip due to shallow slow earthquakes, and the tectonics of the northern part of the Philippine Sea Plate. Families were welcome to participate in the field trip due to Jogashima’s popularity as a tourist destination, and four families joined the trip, making it a good opportunity for socializing.

< Participant comments >

The field trip was very good because the air was clean and the temperature was not too cold. Although we had our meals either separately or in the open air, we were able to somewhat interact with other researchers during the field trip. Since recent meeting presentations have largely been via Zoom, I think that this field trip was beneficial in promoting in-person communications among the participants, thereby creating a new networking format during COVID-19. It was a good opportunity to make new acquaintances, especially with students, young researchers, and people from different fields. Thank you very much. (Saeko Kita)

Upcoming Events

International Joint Workshop on Slow-to-Fast Earthquakes 2022
Date: September 14 (Wed.)-16 (Fri.), 2022
Venue: Nara Kasugano International Forum, Nara

Japan Geoscience Union Meeting 2022
Hybrid (in-person & online): May 22 (Sun.)-27 (Fri.), 2022
Online Poster Session: May 29 (Sun.)-June 3 (Fri.), 2022
On-site: MAKUHARI MESSE, Chiba

Session: [S-CG44] Science of slow-to-fast earthquakes
Oral: May 26 (Thu.), 27 (Fri.)
On-site poster: May 27 (Fri.)

Grant-in-Aid for Transformative Research Areas (A)

SCIENCE OF SLOW TO FAST EARTHQUAKES

Newsletter Vol.1
Date of issue 2022. March
https://en.slow-to-fast-eq.org

Editorial board
Asuka Yamaguchi, Akiko Takeo, Saeko Kita, Yohei Hamada, Makoto Otsubo, Suguru Yabe, Yusuke Yokota, Yuta Mitsui, Akemi Noda, Michiko Watanabe, Nami Tonegawa